Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants

Author:

Iwai Takayoshi1,Miyasaka Atsushi1,Seo Shigemi1,Ohashi Yuko1

Affiliation:

1. National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305–8602, Japan (T.I., S.S., Y.O.); Miyagi Prefectural Agriculture and Horticulture Research Center, Takadate-kawakami, Natori, Miyagi 981–1243, Japan (T.I.); and National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305–8518, Japan (A.M.)

Abstract

Abstract The role of ethylene (ET) in resistance to infection with blast fungus (Magnaporthe grisea) in rice (Oryza sativa) is poorly understood. To study it, we quantified ET levels after inoculation, using young rice plants at the four-leaf stage of rice cv Nipponbare (wild type) and its isogenic plant (IL7), which contains the Pi-i resistance gene to blast fungus race 003. Small necrotic lesions by hypersensitive reaction (HR) were formed at 42 to 72 h postinoculation (hpi) in resistant IL7 leaves, and whitish expanding lesions at 96 hpi in susceptible wild-type leaves. Notable was the enhanced ET emission at 48 hpi accompanied by increased 1-aminocyclopropane-1-carboxylic acid (ACC) levels and highly elevated ACC oxidase (ACO) activity in IL7 leaves, whereas only an enhanced ACC increase at 96 hpi in wild-type leaves. Among six ACC synthase (ACS) and seven ACO genes found in the rice genome, OsACS2 was transiently expressed at 48 hpi in IL7 and at 96 hpi in wild type, and OsACO7 was expressed at 48 hpi in IL7. Treatment with an inhibitor for ACS, aminooxyacetic acid, suppressed enhanced ET emission at 48 hpi in IL7, resulting in expanding lesions instead of HR lesions. Exogenously supplied ACC compromised the aminooxyacetic acid-induced breakdown of resistance in IL7, and treatment with 1-methylcyclopropene and silver thiosulfate, inhibitors of ET action, did not suppress resistance. These findings suggest the importance of ET biosynthesis and, consequently, the coproduct, cyanide, for HR-accompanied resistance to blast fungus in young rice plants and the contribution of induced OsACS2 and OsACO7 gene expression to it.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3