Chemical Form and Distribution of Selenium and Sulfur in the Selenium Hyperaccumulator Astragalus bisulcatus

Author:

Pickering Ingrid J.1,Wright Carrie2,Bubner Ben2,Ellis Danielle3,Persans Michael W.4,Yu Eileen Y.1,George Graham N.1,Prince Roger C.5,Salt David E.3

Affiliation:

1. Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford Linear Accelerator Center, Menlo Park, California 94025 (I.J.P., E.Y.Y., G.N.G.); and

2. Northern Arizona University, Flagstaff, Arizona 86011 (C.W., B.B.);

3. Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 (D.E.S., D.E.);

4. Department of Biology, University of Texas-Pan American, Edinburg, Texas 78539 (M.W.P.);

5. ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801 (R.C.P.).

Abstract

Abstract In its natural habitat, Astragalus bisulcatuscan accumulate up to 0.65% (w/w) selenium (Se) in its shoot dry weight. X-ray absorption spectroscopy has been used to examine the selenium biochemistry of A. bisulcatus. High concentrations of the nonprotein amino acid Se-methylseleno-cysteine (Cys) are present in young leaves of A. bisulcatus, but in more mature leaves, the Se-methylseleno-Cys concentration is lower, and selenate predominates. Seleno-Cys methyltransferase is the enzyme responsible for the biosynthesis of Se-methylseleno-Cys from seleno-Cys and S-methyl-methionine. Seleno-Cys methyltransferase is found to be expressed in A. bisulcatus leaves of all ages, and thus the biosynthesis of Se-methylseleno-Cys in older leaves is limited earlier in the metabolic pathway, probably by an inability to chemically reduce selenate. A comparative study of sulfur (S) and Se in A. bisulcatus using x-ray absorption spectroscopy indicates similar trends for oxidized and reduced Se and S species, but also indicates that the proportions of these differ significantly. These results also indicate that sulfate and selenate reduction are developmentally correlated, and they suggest important differences between S and Se biochemistries.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3