RNAi Silencing of Genes for Elicitation or Biosynthesis of 5-Deoxyisoflavonoids Suppresses Race-Specific Resistance and Hypersensitive Cell Death in Phytophthora sojae Infected Tissues

Author:

Graham Terrence L.1,Graham Madge Y.1,Subramanian Senthil1,Yu Oliver1

Affiliation:

1. Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, Ohio State University, Columbus, Ohio 43210 (T.L.G., M.Y.G.); and Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (S.S., O.Y.)

Abstract

Abstract Isoflavonoids are thought to play an important role in soybean (Glycine max) resistance to Phytophthora sojae. This was addressed by silencing two genes for their biosynthesis and a third gene controlling their elicitation. Silencing of genes for isoflavone synthase (IFS) or chalcone reductase (CHR) was achieved in soybean roots through an Agrobacterium rhizogenes-mediated RNAi approach. Effectiveness of silencing was followed both by quantitative reverse transcriptase-polymerase chain reaction and high-performance liquid chromatography analyses. Silencing either IFS or CHR led to a breakdown of Rps-mediated resistance to race 1 of P. sojae in ‘W79’ (Rps 1c) or ‘W82’ (Rps 1k) soybean. Loss of resistance was accompanied by suppression of hypersensitive (HR) cell death in both cultivars and suppression of cell death-associated activation of hydrogen peroxide and peroxidase. The various results suggest that the 5-deoxyisoflavonoids play a critical role in the establishment of cell death and race-specific resistance. The P. sojae cell wall glucan elicitor, a potent elicitor of 5-deoxyisoflavonoids, triggered a cell death response in roots that was also suppressed by silencing either CHR or IFS. Furthermore, silencing of the elicitor-releasing endoglucanase (PR-2) led to a loss of HR cell death and race-specific resistance to P. sojae and also to a loss of isoflavone and cell death responses to cell wall glucan elicitor. Taken together, these results suggest that in situ release of active fragments from a general resistance elicitor (pathogen-associated molecular pattern) is necessary for HR cell death in soybean roots carrying resistance genes at the Rps 1 locus, and that this cell death response is mediated through accumulations of the 5-deoxyisoflavones.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3