Aluminum Activates a Citrate-Permeable Anion Channel in the Aluminum-Sensitive Zone of the Maize Root Apex. A Comparison Between an Aluminum- Sensitive and an Aluminum-Resistant Cultivar

Author:

Kollmeier Malte1,Dietrich Petra2,Bauer Claudia S.2,Horst Walter J.1,Hedrich Rainer2

Affiliation:

1. Institute of Plant Nutrition, University of Hannover, Herrenhäuser Strasse 2, D–30419 Hannover, Germany (M.K., W.J.H.); and

2. Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, University of Würzburg, Julius-von-Sachs-Platz 2, D–97082 Würzburg, Germany (P.D., C.S.B., R.H.)

Abstract

Abstract In search for the cellular and molecular basis for differences in aluminum (Al) resistance between maize (Zea mays) cultivars we applied the patch-clamp technique to protoplasts isolated from the apical root cortex of two maize cultivars differing in Al resistance. Measurements were performed on protoplasts from two apical root zones: The 1- to 2-mm zone (DTZ), described as most Al-sensitive, and the main elongation zone (3–5 mm), the site of Al-induced inhibition of cell elongation. Al stimulated citrate and malate efflux from intact root apices, revealing cultivar differences. In the elongation zone, anion channels were not observed in the absence and presence of Al. Preincubation of intact roots with 90 μmAl for 1 h induced a citrate- and malate-permeable, large conductance anion channel in 80% of the DTZ protoplasts from the resistant cultivar, but only 30% from the sensitive cultivar. When Al was applied to the protoplasts in the whole-cell configuration, anion currents were elicited within 10 min in the resistant cultivar only. La3+ was not able to replace or counteract with Al3+ in the activation of this channel. In the presence of the anion-channel blockers, niflumic acid and 4, 4′-dinitrostilbene-2, 2′disulfonic acid, anion currents as well as exudation rates were strongly inhibited. Application of cycloheximide did not affect the Al response, suggesting that the channel is activated through post-translational modifications. We propose that the Al-activated large anion channel described here contributes to enhanced genotypical Al resistance by facilitating the exudation of organic acid anions from the DTZ of the maize root apex.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3