Affiliation:
1. Laboratoire de Physiologie et Biochimie Vegetales, Unite Associee Centre National de la Recherche Scientifique 574, Universite de Poitiers, Batiment Botanique, 40, Avenue du Recteur Pineau, 86022 Poitiers Cedex, France (A.J., S.D.)
Abstract
Abstract
Transport of reduced glutathione (GSH) and oxidized glutathione (GSSG) was studied with broad bean (Vicia faba L.) leaf tissues and protoplasts. Protoplasts and leaf discs took up GSSG at a rate about twice the uptake rate of GSH. Detailed studies with protoplasts indicated that GSH and GSSG uptake exhibited the same sensitivity to the external pH and to various chemical reagents. GSH uptake was inhibited by GSSG and glutathione conjugates. GSSG uptake was inhibited by GSH and GS conjugates, and the uptake of metolachlor-GS was inhibited by GSSG. Various amino acids (L-glutamic acid, L-glutamine, L-cysteine, L-glycine, L-methionine) and peptides (glycine-glycine, glycine-glycine-glycine) affected neither the transport of GSH nor GSSG. Uptake kinetics indicate that GSH is taken up by a single saturable transporter, with an apparent Km of 0.4 mM, whereas GSSG uptake exhibits two saturable phases, with an apparent Km of 7 [mu]M and 3.7 mM. It is concluded that the plasma membrane of leaf cells contains a specific transport system for glutathione, which takes up GSSG and GS conjugates preferentially over GSH. Proton flux measurements and electrophysiological measurements indicate that GSH and GSSG are taken up with proton symport. However, a detailed analysis of these measurements suggests that the ion movements induced by GSSG differ from those induced by GSH.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献