Control of Demand-Driven Biosynthesis of Glutathione in Green Arabidopsis Suspension Culture Cells

Author:

Meyer Andreas J.1,Fricker Mark D.1

Affiliation:

1. Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom

Abstract

Abstract We have investigated what limits demand-driven de novo glutathione (GSH) biosynthesis in green Arabidopsis suspension culture cells. GSH is the most abundant low-molecular weight thiol in most plants and can be quantified using monochlorobimane to fluorescently label GSH in live cells. Progress curves for labeling reached a plateau as all the cytoplasmic GSH was conjugated. In the presence of excess monochlorobimane, a second, almost linear phase of labeling was observed, after a lag of 2 to 3 h, that was then maintained for an extended period. The increase in fluorescence was shown to be because of de novo GSH biosynthesis by high-performance liquid chromatography analysis and was eliminated bydl-buthionine-[S,R]-sulfoximine, a specific inhibitor of GSH biosynthesis, or reduced by inhibitors of transcription and translation. The rate of GSH biosynthesis during the linear phase was 8.9 ± 1.4 nmol g fresh weight−1min−1 and was not affected by addition of glutamate, glycine, or cysteine, the immediate precursors needed for GSH biosynthesis. Likewise, the synthesis rate was not affected by pretreatment with aminotriazole, menadione, jasmonic acid, or cadmium, all of which cause oxidative stress and up-regulate expression of GSH biosynthetic genes. The lag phase was markedly reduced by aminotriazole and menadione and marginally by jasmonic acid, suggesting the system was primed to react faster after mild stress. In contrast to the other feeding experiments, exclusion of SO4  2− from the medium abolished the second phase completely. This suggests demand-driven GSH biosynthesis is directly coupled to uptake of SO4  2− and that the linear increase in fluorescence reflects flux through the entire SO4  2− assimilation pathway.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3