Genomic and Proteomic Analysis of Mitochondrial Carrier Proteins in Arabidopsis

Author:

Millar A. Harvey1,Heazlewood Joshua L.1

Affiliation:

1. Plant Molecular Biology Group, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia

Abstract

Abstract Plant mitochondria maintain metabolic communication with the cytosol through a family of carrier proteins. In Arabidopsis, a subset of 45 putative genes encoding members of this family have been identified based on generalized mitochondrial carrier features. No gene clusters are apparent and few of the predicted protein products have mitochondrial targeting sequences recognized by bioinformatic predictors. Only nine genes are currently represented by more than 10 expressed sequence tags at The Institute for Genomic Research. Analyses of public microarray experiments reveal differential expression profiles of the more highly expressed members of this gene family in different plant organs and in response to plant hormone application and environmental stresses. A comparison of this Arabidopsis carrier subset (45) to the yeast gene family (35) reveals 10 orthologous groups between the two species. Recent surveys of the Arabidopsis mitochondrial proteome by two-dimensional gel separations have not identified any of these carrier proteins, presumably because of their hydrophobicity and basicity. Isolating integral membrane proteins from Arabidopsis mitochondria, using one-dimensional electrophoresis for protein separation and tandem mass spectrometry-based sequencing of doubly charged peptides, we have unequivocally identified specific carrier gene products located in mitochondria. This approach has identified six of the nine carriers represented highly in expressed sequence tag databases: adenine nucleotide translocator (At3g8580 and At5g13490), dicarboxylate/tricarboxylate carrier (At5g19760), phosphate carrier (At5g14040), uncoupling protein (At3g54110), and a carrier gene of unknown function (At4g01100). Overall, the combined transcript and protein expression data indicates that only a small subset of the carrier family of genes provide the majority of carrier proteins of Arabidopsis mitochondria.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3