Dissecting Defense-Related and Developmental Transcriptional Responses of Maize during Ustilago maydis Infection and Subsequent Tumor Formation

Author:

Basse Christoph W.1

Affiliation:

1. Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, D–35043 Marburg, Germany

Abstract

Abstract Infection of maize (Zea mays) plants with the smut fungus Ustilago maydis triggers the formation of tumors on aerial parts in which the fungal life cycle is completed. A differential display screen was performed to gain insight into transcriptional changes of the host response. Some of the genes strongly up-regulated in tumors showed a pronounced developmental expression pattern with decreasing transcript levels from basal to apical shoot segments, suggesting that U. maydis has the capacity to extend the undifferentiated state of maize plants. Differentially expressed genes implicated in secondary metabolism were Bx1, involved in biosynthesis of the cyclic hydroxamic acid 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one, and a novel putative sesquiterpene cyclase gene U. maydis induced (Umi)2. Together with the up-regulation of Umi11 encoding a cyclotide-like protein this suggests a nonconventional induction of plant defenses. Explicitly, U. maydis was resistant to 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one but susceptible to its benzoxazolinone derivative 6-methoxy-2-benzoxazolinone. Infection studies of isolated leaves with U. maydis and Colletotrichum graminicola provided evidence for coregulation of Umi2 and PR-1 gene expression, with mRNA levels strongly determined by the extent of fungal colonization within tissue. However, in contrast to Umi2, transcript levels of PR-1 remained low in plants infected with wild-type U. maydis but were 8-fold elevated upon infection with an U. maydis mutant strongly attenuated in pathogenic development. This suggests that U. maydis colonization in planta suppresses a classical defense response. Furthermore, comparative expression analysis uncovered distinct transcriptional programs operating in the host in response to fungal infection and subsequent tumor formation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3