Evidence That Bicarbonate Is Not the Substrate in Photosynthetic Oxygen Evolution

Author:

Clausen Juergen1,Beckmann Katrin1,Junge Wolfgang1,Messinger Johannes1

Affiliation:

1. Abteilung Biophysik, Universität Osnabrück, 49069 Osnabrueck, Germany (J.C., W.J.); and Max-Planck-Institut für Bioanorganische Chemie, 45470 Muelheim an der Ruhr, Germany (K.B., J.M.)

Abstract

Abstract It is widely accepted that the oxygen produced by photosystem II of cyanobacteria, algae, and plants is derived from water. Earlier proposals that bicarbonate may serve as substrate or catalytic intermediate are almost forgotten, though not rigorously disproved. These latter proposals imply that CO2 is an intermediate product of oxygen production in addition to O2. In this work, we investigated this possible role of exchangeable HCO3− in oxygen evolution in two independent ways. (1) We studied a possible product inhibition of the electron transfer into the catalytic Mn4Ca complex during the oxygen-evolving reaction by greatly increasing the pressure of CO2. This was monitored by absorption transients in the near UV. We found that a 3,000-fold increase of the CO2 pressure over ambient conditions did not affect the UV transient, whereas the S3 → S4 → S0 transition was half-inhibited by raising the O2 pressure only 10-fold over ambient, as previously established. (2) The flash-induced O2 and CO2 production by photosystem II was followed simultaneously with membrane inlet mass spectrometry under approximately 15% H218O enrichment. Light flashes that revealed the known oscillatory O2 release failed to produce any oscillatory CO2 signal. Both types of results exclude that exchangeable bicarbonate is the substrate for (and CO2 an intermediate product of) oxygen evolution by photosynthesis. The possibility that a tightly bound carbonate or bicarbonate is a cofactor of photosynthetic water oxidation has remained.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3