Grapes on Steroids. Brassinosteroids Are Involved in Grape Berry Ripening

Author:

Symons Gregory M.1,Davies Christopher1,Shavrukov Yuri1,Dry Ian B.1,Reid James B.1,Thomas Mark R.1

Affiliation:

1. School of Plant Science, University of Tasmania, Hobart, Tasmania 7005, Australia (G.M.S., J.B.R.); and Commonwealth Scientific and Industrial Research Organization, Plant Industry and Cooperative Research Centre for Viticulture, Glen Osmond, South Australia 5064, Australia (C.D., Y.S., I.B.D., M.R.T.)

Abstract

Abstract Fruit ripening is a unique plant developmental process with direct implications for our food supply, nutrition, and health. In contrast to climacteric fruit, where ethylene is pivotal, the hormonal control of ripening in nonclimacteric fruit, such as grape (Vitis vinifera), is poorly understood. Brassinosteroids (BRs) are steroidal hormones, essential for normal plant growth and development but not previously implicated in the ripening of nonclimacteric fruit. Here we show that increases in endogenous BR levels, but not indole-3-acetic acid (IAA) or GA levels, are associated with ripening in grapes. Putative grape homologs of genes encoding BR biosynthesis enzymes (BRASSINOSTEROID-6-OXIDASE and DWARF1) and the BR receptor (BRASSINOSTEROID INSENSITIVE 1) were isolated, and the function of the grape BRASSINOSTEROID-6-OXIDASE gene was confirmed by transgenic complementation of the tomato (Lycopersicon esculentum) extreme dwarf (dx/dx) mutant. Expression analysis of these genes during berry development revealed transcript accumulation patterns that were consistent with a dramatic increase in endogenous BR levels observed at the onset of fruit ripening. Furthermore, we show that application of BRs to grape berries significantly promoted ripening, while brassinazole, an inhibitor of BR biosynthesis, significantly delayed fruit ripening. These results provide evidence that changes in endogenous BR levels influence this key developmental process. This may provide a significant insight into the mechanism controlling ripening in grapes, which has direct implications for the logistics of grape production and down-stream processing.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3