TPK1 Is a Vacuolar Ion Channel Different from the Slow-Vacuolar Cation Channel

Author:

Bihler Hermann1,Eing Christian1,Hebeisen Simon1,Roller Anja1,Czempinski Katrin1,Bertl Adam1

Affiliation:

1. Botanisches Institut I, Universität Karlsruhe, D–76128 Karlsruhe, Germany (H.B., C.E., S.H., A.R., A.B.); and Universität Potsdam, Institut für Biochemie und Biologie, D–14476 Golm, Germany (K.C.)

Abstract

Abstract TPK1 (formerly KCO1) is the founding member of the family of two-pore domain K+ channels in Arabidopsis (Arabidopsis thaliana), which originally was described following expression in Sf9 insect cells as a Ca2+- and voltage-dependent outwardly rectifying plasma membrane K+ channel. In plants, this channel has been shown by green fluorescent protein fusion to localize to the vacuolar membrane, which led to speculations that the TPK1 gene product would be a component of the nonselective, Ca2+ and voltage-dependent slow-vacuolar (SV) cation channel found in many plants species. Using yeast (Saccharomyces cerevisiae) as an expression system for TPK1, we show functional expression of the channel in the vacuolar membrane. In isolated vacuoles of yeast yvc1 disruption mutants, the TPK1 gene product shows ion channel activity with some characteristics very similar to the SV-type channel. The open channel conductance of TPK1 in symmetrically 100 mm KCl is slightly asymmetric with roughly 40 pS at positive membrane voltages and 75 pS at negative voltages. Similar to the SV-type channel, TPK1 is activated by cytosolic Ca2+, requiring micromolar concentration for activation. However, in contrast to the SV-type channel, TPK1 exhibits strong selectivity for K+ over Na+, and its activity turned out to be independent of the membrane voltage over the range of ±80 mV. Our data clearly demonstrate that TPK1 is a voltage-independent, Ca2+-activated, K+-selective ion channel in the vacuolar membrane that does not mediate SV-type ionic currents.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3