Chloroplastic NAD(P)H Dehydrogenase in Tobacco Leaves Functions in Alleviation of Oxidative Damage Caused by Temperature Stress

Author:

Wang Peng1,Duan Wei1,Takabayashi Atsushi1,Endo Tsuyoshi1,Shikanai Toshiharu1,Ye Ji-Yu1,Mi Hualing1

Affiliation:

1. National Laboratory of Plant Molecular Genetics, Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China (P.W., J.-Y.Y., H.M.); Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (W.D.); Division of Integrated Life Sciences, Graduate School of Biostudies, Kyoto University, Sakyo, Kyoto 606–8502, Japan (A.

Abstract

Abstract In this study, the function of the NAD(P)H dehydrogenase (NDH)-dependent pathway in suppressing the accumulation of reactive oxygen species in chloroplasts was investigated. Hydrogen peroxide accumulated in the leaves of tobacco (Nicotiana tabacum) defective in ndhC-ndhK-ndhJ (ΔndhCKJ) at 42°C and 4°C, and in that of wild-type leaves at 4°C. The maximum quantum efficiency of PSII decreased to a similar extent in both strains at 42°C, while it decreased more evidently in ΔndhCKJ at 4°C. The parameters linked to CO2 assimilation, such as the photochemical efficiency of PSII, the decrease of nonphotochemical quenching following the initial rise, and the photosynthetic O2 evolution, were inhibited more significantly in ΔndhCKJ than in wild type at 42°C and were seriously inhibited in both strains at 4°C. While cyclic electron flow around PSI mediated by NDH was remarkably enhanced at 42°C and suppressed at 4°C. The proton gradient across the thylakoid membranes and light-dependent ATP synthesis were higher in wild type than in ΔndhCKJ at either 25°C or 42°C, but were barely formed at 4°C. Based on these results, we suggest that cyclic photophosphorylation via the NDH pathway might play an important role in regulation of CO2 assimilation under heat-stressed condition but is less important under chilling-stressed condition, thus optimizing the photosynthetic electron transport and reducing the generation of reactive oxygen species.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3