Transcriptome Analysis of Cold Acclimation in Barley Albina and Xantha Mutants

Author:

Svensson Jan T.1,Crosatti Cristina1,Campoli Chiara1,Bassi Roberto1,Stanca Antonio Michele1,Close Timothy J.1,Cattivelli Luigi1

Affiliation:

1. Department of Botany and Plant Sciences, University of California, Riverside, California 92521 (J.T.S., T.J.C.); Consiglio per la Ricerca e la Sperimentazione in Agricoltura Centro per le Ricerche Genomiche, 29017 Fiorenzuola d'Arda, Italy (C. Crosatti, C. Campoli, A.M.S., L.C.); and Dipartimento Scientifico e Tecnologico, Università di Verona, 37134 Verona, Italy (C. Campoli, R.B.)

Abstract

Abstract Previously, we have shown that barley (Hordeum vulgare) plants carrying a mutation preventing chloroplast development are completely frost susceptible as well as impaired in the expression of several cold-regulated genes. Here we investigated the transcriptome of barley albina and xantha mutants and the corresponding wild type to assess the effect of the chloroplast on expression of cold-regulated genes. First, by comparing control wild type against cold-hardened wild-type plants 2,735 probe sets with statistically significant changes (P = 0.05; ≥2-fold change) were identified. Expression of these wild-type cold-regulated genes was then analyzed in control and cold-hardened mutants. Only about 11% of the genes cold regulated in wild type were regulated to a similar extent in all genotypes (chloroplast-independent cold-regulated genes); this class includes many genes known to be under C-repeat binding factor control. C-repeat binding factor genes were also equally induced in mutants and wild-type plants. About 67% of wild-type cold-regulated genes were not regulated by cold in any mutant (chloroplast-dependent cold-regulated genes). We found that the lack of cold regulation in the mutants is due to the presence of signaling pathway(s) normally cold activated in wild type but constitutively active in the mutants, as well as to the disruption of low-temperature signaling pathway(s) due to the absence of active chloroplasts. We also found that photooxidative stress signaling pathway is constitutively active in the mutants. These results demonstrate the major role of the chloroplast in the control of the molecular adaptation to cold.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3