Affiliation:
1. John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
Abstract
Abstract
Measurements of metabolic fluxes in whole embryos and isolated plastids have revealed major changes in the pathways of carbon utilization during cotyledon filling by oilseed rape (Brassica napus L.) embryos. In the early cotyledon stage (stage A), embryos used sucrose (Suc) predominantly for starch synthesis. Plastids isolated from these embryos imported glucose-6-phosphate (Glc-6-P) and partitioned it to starch and fatty acids synthesis and to the oxidative pentose phosphate pathway in the ratio of 2:1:1 on a hexose basis. Of the substrates tested, Glc-6-P gave the highest rates of fatty acid synthesis by the plastids and pyruvate was used weakly. By the mid- to late-cotyledon stage (stage C), oil accumulation by the embryos was rapid, as was their utilization of Suc for oil synthesis in vitro. Plastids from C-stage embryos differed markedly from those of stage-A embryos: (a) pyruvate uptake and utilization for fatty acid synthesis increased by respectively 18- and 25-fold; (b) Glc-6-P partitioning was predominantly to the oxidative pentose phosphate pathway (respective ratios of 1:1:3); and (c) the rate of plastidial fatty acid synthesis more than doubled. This increased rate of fatty synthesis was dependent upon the increase in pyruvate uptake and was mediated through the induction of a saturable transporter activity.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
160 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献