Extracellular Protons Inhibit the Activity of Inward- Rectifying Potassium Channels in the Motor Cells of Samanea samanPulvini

Author:

Yu Ling1,Moshelion Menachem1,Moran Nava1

Affiliation:

1. Department of Agricultural Botany, Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Abstract

Abstract The intermittent influx of K+ into motor cells in motor organs (pulvini) is essential to the rhythmic movement of leaves and leaflets in various plants, but in contrast to the K+ influx channels in guard cells, those in pulvinar motor cells have not yet been characterized. We analyzed these channels in the plasma membrane of pulvinar cell protoplasts of the nyctinastic legume Samanea saman using the patch-clamp technique. Inward, hyperpolarization-activated currents were separated into two types: time dependent and instantaneous. These were attributed, respectively, to K+-selective and distinctly voltage-dependent KH channels and to cation-selective voltage-independent leak channels. The pulvinar KH channels were inhibited by external acidification (pH 7.8–5), in contrast to their acidification-promoted counterparts in guard cells. The inhibitory pH effect was resolved into a reversible decline of the maximum conductance and an irreversible shift of the voltage dependence of KH channel gating. The leak appeared acidification insensitive. External Cs (10 mm in 200 mmexternal K+) blocked both current types almost completely, but external tetraethylammonium (10 mm in 200 mm external K+) did not. Although these results do not link these two channel types unequivocally, both likely serve as K+ influx pathways into swelling pulvinar motor cells. Our results emphasize the importance of studying multiple model systems.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3