Functional Analysis of the Early Steps of Carotenoid Biosynthesis in Tobacco

Author:

Busch Marco1,Seuter Anja1,Hain Rüdiger1

Affiliation:

1. Bayer AG, Agricultural Division Research, Molecular Target Research and Biotechnology, 51368 Leverkusen, Germany

Abstract

Abstract Carotenoids contribute to energy transduction in the light harvesting complexes and serve in protection from excess light fluence. Because of the importance of carotenoids, the genes encoding enzymes of carotenoid biosynthesis in higher plants are potential targets for herbicides. To obtain further insight into tobacco carotenoid biosynthesis and to investigate and prioritize potential herbicide targets in the pathway, the effects of changed phytoene synthase (PSY) and phytoene desaturase (PDS) gene expression were studied in transgenic tobacco (Nicotiana tabacum Petit Havana SR1) plants. Genes for both enzymes were cloned from tobacco, and surprisingly two functional PSY genes were found. Transgenic tobacco plants constitutively expressing these genes in both sense and antisense orientations were examined regarding phenotype, carotenoid content and transcript levels of carotene biosynthesis genes. Overexpression of either psy gene resulted in severe phenotypic effects including dwarfism, altered leaf morphology, and pigmentation. A correlation among phenotype, transcript level, and metabolic profile was demonstrated by comparison of hemizygous and homozygous plants from the same transformation event. Antisense expression of PSY and PDS also caused lethal phenotypes. Transcript levels of other carotene biosynthesis genes remained unaltered in the transgenic mutant. Phytoene accumulated in plants expressing antisense RNA to pds. However, elevated levels of phytoene were detected suggesting an increase in metabolic flux into this pathway.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3