Affiliation:
1. Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109–1048
Abstract
AbstractGLYCOGEN SYNTHASE KINASE3 (GSK3) is a highly conserved serine/threonine kinase involved in a variety of developmental signaling processes. The Arabidopsis (Arabidopsis thaliana) genome encodes 10 GSK3-like kinases that are clustered into four groups. Forward genetic screens have so far uncovered eight mutants, all of which carry gain-of-function mutations in BRASSINOSTEROID-INSENSITIVE2 (BIN2), one of the three members in group II. Genetic and biochemical studies have implicated a negative regulatory role for BIN2 in brassinosteroid (BR) signaling. Here, we report the identification of eight ethyl methanesulfonate-mutagenized loss-of-function bin2 alleles and one T-DNA insertional mutation each for BIN2 and its two closest homologs, BIN2-Like1 and BIN2-Like2. Our genetic, biochemical, and physiological assays revealed that despite functional redundancy, BIN2 plays a dominant role among the three group II members in regulating BR signaling. Surprisingly, the bin2bil1bil2 triple T-DNA insertional mutant still responds to BR and accumulates a more phosphorylated form of a BIN2 substrate than the wild-type plant. Using the specific GSK3 inhibitor lithium chloride, we have provided strong circumstantial evidence for the involvement of other Arabidopsis GSK3-like kinases in BR signaling. Interestingly, lithium chloride treatment was able to suppress the gain-of-function bin2-1 mutation but had a much weaker effect on a strong BR receptor mutant, suggesting the presence of a BIN2-independent regulatory step downstream of BR receptor activation.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献