ZmPIN1-Mediated Auxin Transport Is Related to Cellular Differentiation during Maize Embryogenesis and Endosperm Development

Author:

Forestan Cristian1,Meda Silvia1,Varotto Serena1

Affiliation:

1. Department of Environmental Agronomy and Crop Production, University of Padova, Agripolis, 35020 Legnaro, Italy

Abstract

Abstract To study the influence of PINFORMED1 (PIN1)-mediated auxin transport during embryogenesis and endosperm development in monocots, the expression pattern of the three identified ZmPIN1 genes was determined at the transcript level. Localization of the corresponding proteins was also analyzed during maize (Zea mays) kernel development. An anti-indole-3-acetic acid (IAA) monoclonal antibody was used to visualize IAA distribution and correlate the direction of auxin active transport, mediated by ZmPIN1 proteins, with the actual amount of auxin present in maize kernels at different developmental stages. ZmPIN1 genes are expressed in the endosperm soon after double fertilization occurs; however, unlike other tissues, the ZmPIN1 proteins were never polarly localized in the plasma membrane of endosperm cells. ZmPIN1 transcripts and proteins also colocalize in developing embryos, and the ZmPIN1 proteins are polarly localized in the embryo cell plasma membrane from the first developmental stages, indicating the existence of ZmPIN1-mediated auxin fluxes. Auxin distribution visualization indicates that the aleurone, the basal endosperm transfer layer, and the embryo-surrounding region accumulate free auxin, which also has a maximum in the kernel maternal chalaza. During embryogenesis, polar auxin transport always correlates with the differentiation of embryo tissues and the definition of the embryo organs. On the basis of these reports and of the observations on tissue differentiation and IAA distribution in defective endosperm-B18 mutant and in N-1-naphthylphthalamic acid-treated kernels, a model for ZmPIN1-mediated transport of auxin and the related auxin fluxes during maize kernel development is proposed. Common features between this model and the model previously proposed for Arabidopsis (Arabidopsis thaliana) are discussed.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3