A Redox-Mediated Modulation of Stem Bolting in TransgenicNicotiana sylvestrisDifferentially Expressing the External Mitochondrial NADPH Dehydrogenase

Author:

Liu Yun-Jun1,Nunes-Nesi Adriano1,Wallström Sabá V.1,Lager Ida1,Michalecka Agnieszka M.1,Norberg Fredrik E.B.1,Widell Susanne1,Fredlund Kenneth M.1,Fernie Alisdair R.1,Rasmusson Allan G.1

Affiliation:

1. Department of Cell and Organism Biology, Lund University, SE–22362 Lund, Sweden (Y.-J.L., S.V.W., I.L., A.M.M., F.E.B.N., S.W., A.G.R.); Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (A.N.-N., A.R.F.); and Syngenta Seeds AB, SE–26123 Landskrona, Sweden (K.M.F.)

Abstract

AbstractCytosolic NADPH can be directly oxidized by a calcium-dependent NADPH dehydrogenase, NDB1, present in the plant mitochondrial electron transport chain. However, little is known regarding the impact of modified cytosolic NADPH reduction levels on growth and metabolism. Nicotiana sylvestris plants overexpressing potato (Solanum tuberosum) NDB1 displayed early bolting, whereas sense suppression of the same gene led to delayed bolting, with consequential changes in flowering time. The phenotype was dependent on light irradiance but not linked to any change in biomass accumulation. Whereas the leaf NADPH/NADP+ ratio was unaffected, the stem NADPH/NADP+ ratio was altered following the genetic modification and strongly correlated with the bolting phenotype. Metabolic profiling of the stem showed that the NADP(H) change affected relatively few, albeit central, metabolites, including 2-oxoglutarate, glutamate, ascorbate, sugars, and hexose-phosphates. Consistent with the phenotype, the modified NDB1 level also affected the expression of putative floral meristem identity genes of the SQUAMOSA and LEAFY types. Further evidence for involvement of the NADPH redox in stem development was seen in the distinct decrease in the stem apex NADPH/NADP+ ratio during bolting. Additionally, the potato NDB1 protein was specifically detected in mitochondria, and a survey of its abundance in major organs revealed that the highest levels are found in green stems. These results thus strongly suggest that NDB1 in the mitochondrial electron transport chain can, by modifying cell redox levels, specifically affect developmental processes.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3