Photosynthetic Performance and Fertility Are Repressed in GmAOX2b Antisense Soybean

Author:

Chai Tsun-Thai1,Simmonds Daina1,Day David A.1,Colmer Timothy D.1,Finnegan Patrick M.1

Affiliation:

1. School of Plant Biology and Institute of Agriculture, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia (T.-T.C., T.D.C., P.M.F.); Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada K1A 0C6 (D.S.); and Australian Research Council Centre of Excellence in Plant Energy Biology, School of Biological Sciences, Flinders Univ

Abstract

Abstract The alternative oxidase (AOX) is a cyanide-resistant oxidase that provides an alternative outlet for electrons from the respiratory electron transport chain embedded in the inner membrane of plant mitochondria. Examination of soybean (Glycine max) plants carrying a GmAOX2b antisense gene showed AOX to have a central role in reproductive development and fecundity. In three independently transformed antisense lines, seed set was reduced by 16% to 43%, whereas ovule abortion increased by 1.2- to 1.7-fold when compared with nontransgenic transformation control plants. Reduced fecundity was associated with reductions in whole leaf cyanide-resistant, salicylhydroxamic acid-sensitive respiration and net photosynthesis, but there was no change in total respiration in the dark. The frequency of potential fertilization events was reduced by at least one-third in the antisense plants as a likely consequence of prefertilization defects. Pistils of the antisense plants contained a higher proportion of immature-sized, nonfertile embryo sacs compared with nontransgenic control plants. Increased rates of pollen abortion in vivo and reduced rates of pollen germination in vitro suggested that the antisense gene compromised pollen development and function. Reciprocal crosses between antisense and nontransgenic plants revealed that pollen produced by antisense plants was less active in fertilization. Taken together, the results presented here indicate that AOX expression has an important role in determining normal gametophyte development and function.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3