Reactive Oxygen Species Are Involved in Plant Defense against a Gall Midge

Author:

Liu Xuming1,Williams Christie E.1,Nemacheck Jill A.1,Wang Haiyan1,Subramanyam Subhashree1,Zheng Cheng1,Chen Ming-Shun1

Affiliation:

1. Department of Entomology (X.L., M.-S.C.), Department of Statistics (H.W.), and United States Department of Agriculture-Agricultural Research Service Plant Science and Entomology Research Unit (M.-S.C.), Kansas State University, Manhattan, Kansas 66506; and United States Department of Agriculture-Agricultural Research Service Crop Production and Pest Control Research Unit and Department of Entomol

Abstract

Abstract Reactive oxygen species (ROS) play a major role in plant defense against pathogens, but evidence for their role in defense against insects is still preliminary and inconsistent. In this study, we examined the potential role of ROS in defense of wheat (Triticum aestivum) and rice (Oryza sativa) against Hessian fly (Mayetiola destructor) larvae. Rapid and prolonged accumulation of hydrogen peroxide (H2O2) was detected in wheat plants at the attack site during incompatible interactions. Increased accumulation of both H2O2 and superoxide was detected in rice plants during nonhost interactions with the larvae. No increase in accumulation of either H2O2 or superoxide was observed in wheat plants during compatible interactions. A global analysis revealed changes in the abundances of 250 wheat transcripts and 320 rice transcripts encoding proteins potentially involved in ROS homeostasis. A large number of transcripts encoded class III peroxidases that increased in abundance during both incompatible and nonhost interactions, whereas the levels of these transcripts decreased in susceptible wheat during compatible interactions. The higher levels of class III peroxidase transcripts were associated with elevated enzymatic activity of peroxidases at the attack site in plants during incompatible and nonhost interactions. Overall, our data indicate that class III peroxidases may play a role in ROS generation in resistant wheat and nonhost rice plants during response to Hessian fly attacks.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3