Affiliation:
1. Program in Plant Molecular and Cellular Biology and Horticultural Sciences (S.K.B., J.R.S., L.C.H.) and Department of Chemistry (J.D.S.), University of Florida, Gainesville, Florida 32611
Abstract
Abstract
ADP-glucose pyrophosphorylase catalyzes the synthesis of ADP-glucose (ADP-Glc) from Glc-1-phosphate (G-1-P) and ATP. Kinetic studies were performed to define the nature of the reaction, both in the presence and absence of allosteric effector molecules. When 3-phosphoglycerate (3-PGA), the putative physiological activator, was present at a saturating level, initial velocity studies were consistent with a Theorell-Chance BiBi mechanism and product inhibition data supported sequential binding of ATP and G-1-P, followed by ordered release of pyrophosphate and ADP-Glc. A sequential mechanism was also followed when 3-PGA was absent, but product inhibition patterns changed dramatically. In the presence of 3-PGA, ADP-Glc is a competitive inhibitor with respect to ATP. In the absence of 3-PGA—with or without 5.0 mm inorganic phosphate—ADP-Glc actually stimulated catalytic activity, acting as a feedback product activator. By contrast, the other product, pyrophosphate, is a potent inhibitor in the absence of 3-PGA. In the presence of subsaturating levels of allosteric effectors, G-1-P serves not only as a substrate but also as an activator. Finally, in the absence of 3-PGA, inorganic phosphate, a classic inhibitor or antiactivator of the enzyme, stimulates enzyme activity at low substrate by lowering the K M values for both substrates.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献