Affiliation:
1. Department of Plant Biology (F.G.D., S.P.L.), Department of Crop Sciences (S.P.L.), and Institute for Genomic Biology (S.P.L.), University of Illinois, Urbana, Illinois 61801
Abstract
Abstract
In the first side-by-side large-scale trials of these two C4 crops in the U.S. Corn Belt, Miscanthus (Miscanthus × giganteus) was 59% more productive than grain maize (Zea mays). Total productivity is the product of the total solar radiation incident per unit land area and the efficiencies of light interception (ϵ i) and its conversion into aboveground biomass (ϵ ca). Averaged over two growing seasons, ϵ ca did not differ, but ϵ i was 61% higher for Miscanthus, which developed a leaf canopy earlier and maintained it later. The diurnal course of photosynthesis was measured on sunlit and shaded leaves of each species on 26 dates. The daily integral of leaf-level photosynthetic CO2 uptake differed slightly when integrated across two growing seasons but was up to 60% higher in maize in mid-summer. The average leaf area of Miscanthus was double that of maize, with the result that calculated canopy photosynthesis was 44% higher in Miscanthus, corresponding closely to the biomass differences. To determine the basis of differences in mid-season leaf photosynthesis, light and CO2 responses were analyzed to determine in vivo biochemical limitations. Maize had a higher maximum velocity of phosphoenolpyruvate carboxylation, velocity of phosphoenolpyruvate regeneration, light saturated rate of photosynthesis, and higher maximum quantum efficiency of CO2 assimilation. These biochemical differences, however, were more than offset by the larger leaf area and its longer duration in Miscanthus. The results indicate that the full potential of C4 photosynthetic productivity is not achieved by modern temperate maize cultivars.
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Genetics,Physiology
Cited by
331 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献