A T9G Mutation in the Prototype TATA-Box TCACTATATATAG Determines Nucleosome Formation and Synergy with Upstream Activator Sequences in Plant Promoters

Author:

Ranjan Amol1,Ansari Suraiya A.1,Srivastava Rakesh1,Mantri Shrikant1,Asif Mehar H.1,Sawant Samir V.1,Tuli Rakesh1

Affiliation:

1. National Botanical Research Institute, Council of Scientific and Industrial Research, Lucknow 226001, India

Abstract

Abstract We had earlier reported that mutations to G and C at the seventh and eighth positions in the prototype TATA-box TCACTATATATAG inhibited light-dependent activation of transcription from the promoter. In this study, we characterized mutations at the ninth position of the prototype TATA-box. Substitution of T at the ninth position with G or C enhanced transcription from the promoter in transgenic tobacco (Nicotiana tabacum) plants. The effect of T9G/C mutations was not light dependent, although the 9G/C TATA-box showed synergy with the light-responsive element (lre). However, the 9G/C mutants in the presence of lre failed to respond to phytochromes, sugar, and calcium signaling, in contrast to the prototype TATA-box with lre. The 9G/C mutation shifted the point of initiation of transcription, and transcription activation was dependent upon the type of activating element present upstream. The synergy in activation was noticed with lre and legumin activators but not with rbcS, Pcec, and PR-1a activators. The 9G mutation resulted in a micrococcal nuclease-sensitive region over the TATA-box, suggesting a nucleosome-free region, in contrast to the prototype promoter, which had a distinct nucleosome on the TATA-box. Thus, the transcriptional augmentation with mutation at the ninth position might be because of the loss of a repressive nucleosomal structure on the TATA-box. In agreement with our findings, the promoters containing TATAGATA as identified by genome-wide analysis of Arabidopsis (Arabidopsis thaliana) are not tightly repressed.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3