TriFLDB: A Database of Clustered Full-Length Coding Sequences from Triticeae with Applications to Comparative Grass Genomics

Author:

Mochida Keiichi1,Yoshida Takuhiro1,Sakurai Tetsuya1,Ogihara Yasunari1,Shinozaki Kazuo1

Affiliation:

1. Plant Science Center, RIKEN, Yokohama 230–0045, Japan (K.M., T.Y., T.S., K.S.); and Kihara Institute for Biological Research, Yokohama City University, Yokohama 710–0046, Japan (Y.O.)

Abstract

Abstract The Triticeae Full-Length CDS Database (TriFLDB) contains available information regarding full-length coding sequences (CDSs) of the Triticeae crops wheat (Triticum aestivum) and barley (Hordeum vulgare) and includes functional annotations and comparative genomics features. TriFLDB provides a search interface using keywords for gene function and related Gene Ontology terms and a similarity search for DNA and deduced translated amino acid sequences to access annotations of Triticeae full-length CDS (TriFLCDS) entries. Annotations consist of similarity search results against several sequence databases and domain structure predictions by InterProScan. The deduced amino acid sequences in TriFLDB are grouped with the proteome datasets for Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and sorghum (Sorghum bicolor) by hierarchical clustering in stepwise thresholds of sequence identity, providing hierarchical clustering results based on full-length protein sequences. The database also provides sequence similarity results based on comparative mapping of TriFLCDSs onto the rice and sorghum genome sequences, which together with current annotations can be used to predict gene structures for TriFLCDS entries. To provide the possible genetic locations of full-length CDSs, TriFLCDS entries are also assigned to the genetically mapped cDNA sequences of barley and diploid wheat, which are currently accommodated in the Triticeae Mapped EST Database. These relational data are searchable from the search interfaces of both databases. The current TriFLDB contains 15,871 full-length CDSs from barley and wheat and includes putative full-length cDNAs for barley and wheat, which are publicly accessible. This informative content provides an informatics gateway for Triticeae genomics and grass comparative genomics. TriFLDB is publicly available at http://TriFLDB.psc.riken.jp/.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Regulation of Seed Dormancy Genes in Triticeae Species;Methods in Molecular Biology;2024

2. The Wheat Transcriptome and Discovery of Functional Gene Networks;Compendium of Plant Genomes;2023-11-14

3. Structural and Functional Annotation of the Wheat Genome;Compendium of Plant Genomes;2023-11-14

4. Nucleotide diversity and molecular characterization of soluble starch synthase I gene in wheat and its ancestral species;Journal of Plant Biochemistry and Biotechnology;2022-05-21

5. Wheat genomics and genome editing;Climate Change and Food Security with Emphasis on Wheat;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3