Fine-Tuning of a Voice Production Model to Estimate Impact Stress Using a Metaheuristic Method

Author:

Calvache-Mora Carlos-AlbertoORCID,Soláque LeonardoORCID,Velasco AlexandraORCID,Peñuela LinaORCID

Abstract

Introduction. In vocal production models employing spring-mass-damper frameworks, precision in determining damping coefficients that align with physiological vocal fold characteristics is crucial, accounting for potential variations in the representation of viscosity-elasticity properties. Objective. This study aims to conduct a parametric fitting of a vocal production model based on a mass-spring-damper system incorporating subglottic pressure interaction, with the purpose of accurately modeling the collision forces exerted by vocal folds during phonation. Method. A metaheuristic search algorithm was employed for parametric synthesis. The algorithm was applied to elasticity coefficients c1 and c2, as well as damping coefficients ε1 and ε2, which directly correlate with the mass matrices of the model. This facilitates the adjustment of fold composition to achieve desired physiological behavior. Results. The vocal system's behavior for each simulation cycle was compared to a predefined standard under normal conditions. The algorithm determined the simulation endpoint by evaluating discrepancies between key features of the obtained signals and the desired ones. Conclusion. Parametric fitting enabled the approximation of physiological vocal production behavior, providing estimates of the impact forces experienced by vocal folds during phonation.

Publisher

Fundacion Universitaria Maria Cano

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3