Energy-Efficient Location-Routing Problem with Time Windows with Dynamic Demand

Author:

Mirzaei Shokoufeh,Krishnan Krishna,Yildrim Bayram

Abstract

Sustainability and energy savings have attracted considerable attention in recent years. However, in the traditional location-routing problem (LRP), the objective function has yet to minimize the distance traveled regardless of the amount of energy consumed. Although, distance is one of the major factors determining the energy consumption of a distribution network, it is not the only factor. Therefore, this paper explains the development of a novel formulation of the LRP that considers energy minimization, which is called the energy-efficient location-routing problem (EELRP). The energy consumed by a vehicle to travel between two nodes in a system depends on many forces. Among those, rolling resistance (RR) and aerodynamic drag are considered in this paper to be the major contributing forces. The presented mixed-integer non-linear program (MINLP) finds the best location-allocation routing plan with the objective function of minimizing total costs, including energy, emissions, and depot establishment. The proposed model can also handle the vehicle-selection problem with respect to a vehicles’ capacity, source of energy, and aerodynamic characteristics. The formulation proposed can also solve the problems with hard and soft time window constraints. Also, the model is enhanced to handle the EELRP with dynamic customers’ demands. Some examples are presented to illustrate the formulations presented in this paper.

Publisher

Society for Industrial and Systems Engineering

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on location-routing problem of highway and high-speed railway multimodal transportation considering timeliness demand;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3