Through-Space Conjugation: A Thriving Alternative for Optoelectronic Materials

Author:

Li Jinshi,Shen Pingchuan,Zhao Zujin,Tang Ben Zhong

Abstract

Efficient electronic coupling is the key to constructing optoelectronic functional π systems. Generally, the delocalization of π electrons must comply with the framework constructed by covalent bonds (typically σ bonds), representing classic through-bond conjugation. However, through-space conjugation offers an alternative that achieves spatial electron communication with closely stacked π systems instead of covalent bonds thus enabling multidimensional energy and charge transport. Because of the ever-accelerating advances of through-space conjugation studies, researchers are inspired greatly by the beauty of through-space conjugated systems and their potential in high-tech applications. In this mini review, we introduce some representative and newly developed π systems having the through-space conjugation feature. In addition to discussing the profound impacts of through-space conjugation on the luminescence properties and charge transport, we will review some impressive findings of distinctive molecules with attractive characteristics, such as aggregation-induced emission, thermally activated delayed fluorescence, bipolar charge transport, and multichannel. These achievements may bring about new breakthroughs of theory, materials, and devices in the fields of organic electronics and molecular electronics.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Publisher

Chinese Chemical Society

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3