Persistent Superprotonic Conductivity in the Order of 10−1 S·cm−1 Achieved Through Thermally Induced Structural Transformation of a Uranyl Coordination Polymer

Author:

Gui Daxiang,Duan Wanchun,Shu Jie,Zhai Fuwan,Wang Ning,Wang Xiangxiang,Xie Jian,Li Hui,Chen Lanhua,Diwu Juan,Chai Zhifang,Wang Shuao

Abstract

Despite tremendous efforts having been made in the exploration of new high-performance proton-conducting materials, systems with superprotonic conductivity higher than 10−1 S·cm−1 are scarcely reported. We show here the utilization of bridging uranyl oxo atoms, traditionally termed cation–cation interaction (CCI), as the hydrogen bond acceptor to build a dense and ordered hydrogen bond network, affording a unique uranyl-based proton-conducting coordination polymer (H3O)4UO2(PO4)2 (HUP-1). This compound contains a densely connected hydronium network that is substantially stabilized by uranyl oxo atoms and exhibits high proton conductivities over a wide temperature range. At 98 °C, 98% relative humidity, a superprotonic conductivity of 1.02 × 10−1 S·cm−1 is observed for the system, one of the highest values reported for a solid-state proton-conducting material. This property originates from the thermally induced phase transformation from HUP-1 to another uranyl compound also with a CCI bond, (H3O)UO2PO4·(H2O)3 (HUP-2), accompanied by the partial generation of phosphorus acid that is further trapped in the structure of HUP-2, demonstrated by solid-state NMR analysis. The superprotonic conductivity of H3PO4@HUP-2 is persistent under the testing condition.

Funder

National Natural Science Foundation of China

Publisher

Chinese Chemical Society

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3