Inviscid-Viscous Interaction Method for Three-Dimensional Inverse Design of Centrifugal Impellers

Author:

Zangeneh M.1

Affiliation:

1. Department of Mechanical Engineering, University College of London, London, United Kingdom

Abstract

A three-dimensional design method for the design of the blade geometry of centrifugal compressor impellers is presented. In this method the blade shape is computed for a specified circulation distribution, normal (or tangential) thickness distribution, and meridional geometry. As the blade shapes are computed by using an inviscid slip (or flow tangency) condition, the viscous effects are introduced indirectly by using a viscous/inviscid procedure. The three-dimensional Navier–Stokes solver developed by Dawes is used as the viscous method. Two different approaches are described for incorporating the viscous effects into the inviscid design method. One method is based on the introduction of an aerodynamic blockage distribution throughout the meridional geometry, while in the other approach a vorticity term directly related to the entropy gradients in the machine is introduced. The method is applied to redesign the blade geometry of Eckardt’s 30 deg backswept impeller as well as a generic high pressure ratio (transonic) impeller. The results indicate that the entropy gradient approach can fairly accurately represent the viscous effects in the machine.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3