Numerical Simulation of the Flow Field Around Supersonic Air-Intakes

Author:

Freskos G.1,Penanhoat O.2

Affiliation:

1. CERFACS, 42 av. Coriolis, 31057 Toulouse, France

2. SNECMA Villaroche Center, 77550 Moissy-Cramayel, France

Abstract

The demand for efficiency in today’s and in future civil aircraft is such that experimental studies alone do not suffice to optimize aircraft aerodynamics. In this context, much effort has been spent in the past decade to develop numerical methods capable of reproducing the phenomena that occur in the engine flow field. This paper presents some studies in Computational Fluid Dynamics related to supersonic inlets. Two approaches are considered. First, there is a need for a code capable of calculating in a cost-efficient way the entire flow field around a two-dimensional or three-dimensional inlet, e.g., to perform parametric studies. To this effect, a computing method based on grid construction by mesh generator dedicated to inlet shapes and on the discretization of the unsteady Euler equations with an explicit upwind scheme was developed. The treatment of complex geometries led us to adopt a multiblock grid approach. Therefore particular attention was paid to the treatment of the boundary conditions between the different domains. Second, there is a need for a code that can capture local phenomena in order to get a better understanding of inlet behavior (shock/shock, shock/boundary layer interactions, etc.). To this effect a two-dimensional turbulent Navier-Stokes code is used. The two-equation k-ε turbulence model included in the program seems to be one of the most successful models for calculating flow realistically. Correction of the near-wall influence extends its capability to complex flow configurations, e.g., those with separated zones.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3