Simplified Approach to Predicting Rough Surface Transition

Author:

Boyle R. J.1,Stripf M.2

Affiliation:

1. NASA Glenn Research Center, Cleveland, OH 44135

2. Universität Karlsruhe, 76128 Karlsruhe, Germany

Abstract

Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consistent with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparisons are presented with published experimental data. Some of the data are for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach taken in this analysis is to treat the roughness in a statistical sense, consistent with what would be obtained from blades measured after exposure to actual engine environments. An approach is given to determine the equivalent sand grain roughness from the statistics of the regular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test conditions. Additional comparisons are made with experimental heat transfer data, where the roughness geometries are both regular and statistical. Using the developed analysis, heat transfer calculations are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

Publisher

ASME International

Subject

Mechanical Engineering

Reference45 articles.

1. Arts, T., Lambert de Rouvroit, M., and Rutherford, A. W., 1990, “Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade,” VKI Technical Note 174.

2. Thermal Investigation of a Highly Loaded Transonic Turbine Film Cooled Guide Vane;Arts

3. Hourmouziadis, J. , 1989, “Aerodynamic Design of Low Pressure Turbines,” AGARD Lecture Series No. 167.

4. Measurements and Prediction of the Effects of Surface Roughness on Profile Losses and Deviation in a Turbine Cascade;Kind;ASME J. Turbomach.

5. Investigation of Rotor Blade Roughness Effects on Turbine Performance;Boynton;ASME J. Turbomach.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3