Tip Clearance Investigation of a Ducted Fan Used in VTOL Unmanned Aerial Vehicles—Part II: Novel Treatments Via Computational Design and Their Experimental Verification

Author:

Akturk Ali1,Camci Cengiz2

Affiliation:

1. e-mail:

2. Professor of Aerospace Engineering e-mail:  Turbomachinery Aero-Heat Transfer Laboratory, Department Aerospace Engineering, Pennsylvania State University, University Park, PA 16802

Abstract

Ducted fan based vertical lift systems are excellent candidates to be in the group of the next generation vertical lift vehicles, with many potential applications in general aviation and military missions. Although ducted fans provide high performance in many “vertical take-off and landing” (VTOL) applications, there are still unresolved problems associated with these systems. Fan rotor tip leakage flow adversely affects the general aerodynamic performance of ducted fan VTOL unmanned aerial vehicles (UAVs). The current study utilized a three-dimensional Reynolds-averaged Navier–Stokes (RANS) based computational fluid dynamics (CFD) model of ducted fan for the development and design analysis of novel tip treatments. Various tip leakage mitigation schemes were introduced by varying the chordwise location and the width of the extension in the circumferential direction. Reduced tip clearance related flow interactions were essential in improving the energy efficiency and range of ducted fan based vehicles. Full and inclined pressure side tip squealers were also designed. Squealer tips were effective in changing the overall trajectory of the tip vortex to a higher path in radial direction. The interaction of rotor blades and tip vortex was effectively reduced and the aerodynamic performance of the rotor blades was improved. The overall aerodynamic gain was a measurable reduction in leakage mass flow rate. This leakage reduction increased thrust significantly. Experimental measurements indicated that full and inclined pressure side tip squealers increased thrust obtained in hover condition by 9.1% and 9.6%, respectively. A reduction or elimination of the momentum deficit in tip vortices is essential to reduce the adverse performance effects originating from the unsteady and highly turbulent tip leakage flows rotating against a stationary casing. The novel tip treatments developed throughout this study are highly effective in reducing the adverse performance effects of ducted fan systems developed for VTOL UAVs.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3