Efficient Handling of Implicit Entities in Reduced Mesh Representations

Author:

Celes Waldemar1,Paulino Glaucio H.2,Espinha Rodrigo1

Affiliation:

1. Tecgraf/PUC-Rio, Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ, 22450-900, Brazil

2. Department of Civil and Environmental Engineering, University of Illinois at Urbana–Champaign Newmark Laboratory, MC-250, 205 North Mathews Avenue, Urbana, IL 61801-2397

Abstract

State-of-the-art numerical analyses require mesh representation with a data structure that provides topological information. Due to the increasing size of the meshes currently used for simulating complex behaviors with finite elements or boundary elements (e.g., adaptive and/or coupled analyses), several researchers have proposed the use of reduced mesh representations. In a reduced representation, only a few types of the defined topological entities are explicitly represented; all the others are implicit and retrieved “on-the-fly,” as required. Despite being very effective in reducing the memory space needed to represent large models, reduced representations face the challenge of ensuring the consistency of all implicit entities when the mesh undergoes modifications. As implicit entities are usually described by references to explicit ones, modifying the mesh may change the way implicit entities (which are not directly modified) are represented, e.g., the referenced explicit entities may no longer exist. We propose a new and effective strategy to treat implicit entities in reduced representations, which is capable of handling transient nonmanifold configurations. Our strategy allows, from the application point of view, explicit and implicit entities to be interchangeably handled in a uniform and transparent way. As a result, the application can list, access, attach properties to, and hold references to implicit entities, and the underlying data structure ensures that all such information remains valid even if the mesh is modified. The validity of the proposed approach is demonstrated by running a set of computational experiments on different models subjected to dynamic remeshing operations.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference47 articles.

1. Interactive Finite Element Analysis of Fracture Processes: An Integrated Approach;Wawrzynek;Theor. Appl. Fract. Mech.

2. Arbitrary Crack Representation using Solid Modeling;Martha;Eng. Comput.

3. A General Topology-Based Mesh Data Structure;Beall;Int. J. Numer. Methods Eng.

4. Mesh Data Structure Selection for Mesh Generation and FEA Applications;Garimella;Int. J. Numer. Methods Eng.

5. Algorithm Oriented Mesh Database;Remacle

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3