Effect of Powder Characteristics on Relative Density and Porosity Formation During Electron Beam Selective Melting of Al2024 Aluminum Alloy

Author:

Kenevisi Mohammad Saleh1,Lin Feng1

Affiliation:

1. Tsinghua University Department of Mechanical Engineering; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, , Beijing 100084 , China

Abstract

Abstract Defects, such as pores and cracks, can be found in parts fabricated by powder-bed additive manufacturing techniques. The origin of certain defects, such as some voids, can be linked to initial powder quality, which makes it an important factor in the process. Powders used in additive manufacturing processes are produced by different methods such as gas atomization (GA), plasma atomization (PA), and plasma rotating electrode process (PREP); each gives different powder quality. In this study, two different Al2024 powders, produced by electrode induction GA and PREP techniques, were used to investigate the effect of powder characteristics on defect formation during electron beam melting process (EBM). Powders were first characterized by using Hall flowmeter funnel and scanning electron microscope (SEM); then, the EBM process was carried out, and finally, samples were examined by density measurement using Archimedes method, SEM analysis, and tensile test. PREP powder showed higher levels of sphericity and surface smoothness without attached satellites. Consequently, a higher apparent density and decreased flowing time were achieved in PREP powder. Moreover, gas-induced internal pores were observed in GA particles. The results also revealed the average relative density of 96.7% and 99.4% for the parts built by GA and PREP powders, respectively. SEM micrographs confirmed the results of density measurement of the fabricated parts and showed higher degrees of both spherical and irregular-shaped pores in samples built by GA powder. Additionally, they showed deprived mechanical properties due to the higher porosity contents which can form stress-concentrated areas.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3