Experimental Analysis of a Bayonet Tube at Constant Wall Temperature Conditions Under Laminar, Transition, and Turbulent Flow

Author:

Singh Nishant1,Sharma Ram Vinoy1,Kumar Shalendra1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology , Jamshedpur 831014, India

Abstract

Abstract An experiment was carried out on a bayonet tube that was kept at a constant temperature using condensing steam. In contrast, cold water was permitted to enter the central tube and discharge via an annular portion. The water flow rate was varied, covering laminar, transition, and turbulent regimes. The inner part of the bayonet tube is CPVC (chlorinated polyvinyl chloride, k = 0.136 W · m−1 · K−1), which reduces short-circuit heat transfer across the tube. Temperatures were recorded at different points in the tube. From the results of experiments on total heat transfer and short-circuit heat transfer, the Nusselt number can be calculated. The pressure drop across a bayonet tube determined the friction factor. In examining a range of Reynolds numbers, Effectiveness and figure of merit have been resolved. It has been observed that as the Reynolds number increases, the Nusselt number increases while the friction factor decreases. Both Effectiveness and Figure of Merit decrease with the addition of the Reynolds number, and it is observed that the maximum effective value is 0.86 for a 75 Reynolds number, which is suitable for bayonet solar collectors, and the minimum effective value is 0.2 for an 8062 Reynolds number, which is suitable for bayonet heat exchangers. It serves as reference work for bayonet tubes for designing a parabolic solar collector and heat exchanger.

Publisher

ASME International

Reference59 articles.

1. Influence of Domain Size on Direct Numerical Simulation of Turbulent Flow in a Moderately Curved Concentric Annular Pipe;Phys. Fluids,2020

2. Experimental Study of Laminar-to-Turbulent Transition in Pipe Flow;Phys. Fluids,2022

3. New Designs of Molten-Salt Tubular-Receiver for Solar Power Tower;Energy Procedia,2014

4. The Design of a Liquid Metal Heated Bayonet Tube Steam Generator;J. Am. Soc. Nav. Eng.,2009

5. Parametric Analysis of a Bayonet Tube With a Special Type of Extended Surface,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3