A Framework for Building Dimensionless Behavioral Models to Aid in Function-Based Failure Propagation Analysis

Author:

Coatanéa Eric1,Nonsiri Sarayut1,Ritola Tuomas1,Tumer Irem Y.2,Jensen David C.2

Affiliation:

1. Department of Engineering Design and Production, Helsinki University of Technology (TKK), P.O. Box 4100, FIN-02015 HUT, Finland

2. Complex Engineered System Design Lab, Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 204 Rogers Hall, Corvallis, OR 97331

Abstract

This research builds on previous work on function-based failure analysis and dimensional analysis to develop a design stage failure identification framework. The proposed framework is intended to provide an alternative approach to model the behavior for use in function-based failure analysis proposed in the literature. This paper specifically proposes to develop more detailed behavioral models derived from information available at the configuration level. The new behavioral model uses design variables, which are associated with units and quantities (i.e., mass, length, time, etc…), and generates a graph of interactions for each component to define the quantitative behavior of components. The dimensionless behavioral modeling is applied briefly to the analysis of functional failures and fault propagation at a highly abstract system concept level before any potentially high-cost design commitments are made. The main contributions in this paper include: a method to automatically select the main variables of interest, an automatic causal ordering of the variables based on their units, an automatically generated graph associating the variables, a machinery based on dimensional analysis allowing a quantitative simulation of the graphs, and a methodology to combine subgraphs and create component behavioral models.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference45 articles.

1. Ménadier, J. P. , 1998, Ingéniérie et intégration des systÈmes, HermÈs ed., Paris.

2. Integrated Design and Analysis of Software-Driven Hardware Systems;Tumer;IEEE Trans. Comput.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3