Transformation of Arbitrary Elastic Mode Shapes Into Pseudo-Free-Surface and Rigid Body Modes for Multibody Dynamic Systems

Author:

Sherif Karim1,Irschik Hans2,Witteveen Wolfgang3

Affiliation:

1. Dynamics and Structural Control, Linz Center of Mechatronics, Linz, 4040, Austria

2. Institute of Technical Mechanics, Johannes Kepler University of Linz, Linz, 4040, Austria

3. Upper Austria University of Applied Sciences, Wels, 4600, Austria

Abstract

In multibody dynamics, the flexibility effects of each body are captured by using a linear combination of elastic mode shapes. If a co-rotational and co-translating frame of reference is used together with eigenvectors of the unconstraint body, which are free-surface modes, some spatial integrals in the floating frame of reference configuration do vanish. The corresponding coordinate system is the so-called Tisserand (or Buckens) reference frame. In the present contribution, a technique is developed for separating an arbitrary elastic mode shape into a pseudo-free-surface mode and rigid body modes. The generated pseudo-free-surface mode has most of the advantageous characteristics of a free-surface mode, and spans together with the rigid body modes the same solution space as it is spanned by the original mode shape. Due to the fact that, in the floating frame of reference configuration, the rigid body motions are already described by special generalized coordinates, only the resulting pseudo-free-surface modes are finally used to capture the flexibility effects of each body. A result of the generated pseudo-free-surface modes is that some of the spatial integrals do vanish and, thus, the equations of motion are significantly simplified. Two examples are presented in order to illustrate and to demonstrate the potential of the proposed method.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference37 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3