Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs

Author:

Wright Lesley M.1,Fu Wen-Lung1,Han Je-Chin1

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

The effect of entrance geometry on the heat transfer in rotating, narrow rectangular cooling channels is investigated in this study. Both smooth channels and channels with angled ribs are considered with three different entrance conditions: fully developed, sudden contraction, and partial sudden contraction. The rectangular channel has as aspect ratio of 4:1, and it is oriented at 135° with respect to the plane of rotation. In the test section with angled ribs, the ribs are angled at 45° to the mainstream flow. The rib height-to-hydraulic diameter ratio e/Dh is 0.078, and the rib pitch-to-height ratio P/e is 10. The range of flow parameters includes Reynolds number (Re=5000–40,000), rotation number (Ro=0.0–0.302), and inlet coolant-to-wall density ratio (Δρ/ρ=0.12). The heat transfer at the entrance of the heated portion of the smooth channel is significantly enhanced with the sudden contraction and partial sudden contraction entrances. In the smooth rotating channels, the effect of the entrance geometry is also present; however, as the rotation number increases, the effect of the entrance geometry decreases. It was also found in this study that the sudden and partial sudden contraction entrances provide higher heat transfer enhancement than the fully developed entrance through the first three to four hydraulic diameters of the channels with angled ribs. Again, the effect of the entrance geometry is greater in the stationary channels with angled ribs than the rotating channels with ribs. In both stationary and rotating channels, the influence of the entrance geometry on the heat transfer is more apparent in the smooth channels than in the ribbed channels.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3