Effect of Coating Geometry on Contact Stresses in Two-Dimensional Discontinuous Coatings

Author:

Ramachandra Sunil1,Ovaert Timothy C.1

Affiliation:

1. University of Notre Dame, Aerospace and Mechanical Engineering Department, Notre Dame, IN 46556

Abstract

Recent experimental investigations have shown that discontinuous coatings, characterized by island-like coating deposits on dissimilar substrates, can exhibit improved tribological performance over equivalent continuously-coated substrates. In this analysis, the effect of coating geometry on the normal contact pressure profile was examined for several two-dimensional discontinuous coatings using a numerical elastic stress model. Normal pressure singularities were found for discontinuous coatings having both sharp and rounded edges. However, when crowned discontinuous regions were examined, the normal pressure singularities were reduced or eliminated. Interfacial tensile stress, due to an imposed tangential friction force, was also investigated. The magnitude of this tensile stress (and stress singularities due to edge configuration) was most affected by the friction coefficient and by the discontinuous coating geometry in the middle of the contact region, where the normal contact pressure was the highest. The discontinuous coating has the potential to provide reservoirs of sacrificial solid lubricants, which wear away with the coating itself, providing a friction-reduction mechanism over the life of the coating reducing the interfacial tensile stress which can lead to premature coating failure. [S0742-4787(00)01504-6]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3