Jet-Penetration in Prechamber-Ignited Lean Large-Bore Natural Gas Engines

Author:

Kammerstätter S.1,Bauer S.1,Sattelmayer T.1

Affiliation:

1. Technical University of Munich, Garching, Germany

Abstract

Combustion in lean large-bore natural gas engines is usually initiated by gas-scavenged prechambers. The hot reacting products of the combustion in the prechamber penetrate the main chamber as reacting jets, providing high ignition energy for the lean main chamber charge. The shape and intensity of the reaction zone in these jets are the key elements for efficient ignition and heat release in the main chamber. The influence of geometrical and operational parameters on the reaction during jet penetration was investigated in detail. As the periodically chargeable high pressure combustion cell used in the study provides full optical access to the entire main chamber the evolution of the spatial distribution of the reaction zones was investigated in terms of OH*-chemiluminescence. As jet penetration is a very fast and highly transient process the emission of OH* was recorded at a frequency of f = 30000 Hz. The macroscopic reaction zone parameters in the jet region (penetration length and angle, reacting area and light emission) reveal the influence of orifice size and prechamber gas injection on the heat release in the shear layer between the jet and the lean charge in the main chamber. In addition, the influence of the development of the reaction in these zones on the ignition probability and the main chamber pressure rise is shown. With an appropriate selection of the combination of the prechamber orifice geometry and the operating parameters significant improvements of ignition probability and heat release in the main chamber were obtained.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3