Excitation Tests on Elbow Pipe Specimens to Investigate Failure Behavior Under Excessive Seismic Loads

Author:

Nakamura Izumi1,Kasahara Naoto2

Affiliation:

1. Earthquake Disaster Mitigation Research Division, Hyogo Earthquake Engineering Research Center, National Research Institute for Earth Science and Disaster Resilience, 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan e-mail:

2. Professor Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan e-mail:

Abstract

The accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the 2011 Great East Japan Earthquake raised awareness as to the importance of considering Beyond Design Basis Events (BDBE) when planning for safe management of NPPs. In considering BDBE, it is necessary to clarify the possible failure modes of structures under extreme loading. Because piping systems are one of the representative components of NPPs, an experimental investigation was conducted on the failure of a pipe assembly under simulated excessive seismic loads. The failure mode obtained by excitation tests was mainly fatigue failure. The reduction of the dominant frequency and the increase of hysteresis damping were clearly observed in high-level input acceleration due to plastic deformation, and they greatly affected the specimens’ vibration response. Based on the experimental results, a procedure is proposed for calculating experimental stress intensities based on excitation test so that they can be compared with design limitations.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference22 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3