Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part I: Numerical Validation of Wet Steam Models and Turbine Modeling

Author:

Grübel M.1,Starzmann J.1,Schatz M.1,Eberle T.1,Vogt D. M.1,Sieverding F.2

Affiliation:

1. ITSM—Institute of Thermal Turbomachinery and Machinery Laboratory, University of Stuttgart, Pfaffenwaldring 6, Stuttgart D-70569, Germany e-mail:

2. Siemens AG, Energy Sector, Rheinstrasse 100, Mülheim (Ruhr) D-45478, Germany e-mail:

Abstract

In this publication, an overview of the current state of wetness modeling at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) is given. For the modeling, an Euler–Euler method implemented in the commercial flow solver Ansys CFX is used. This method is able to take into account the nonequilibrium state of the steam and models the interactions between the gaseous and liquid phases. This paper is the first part of a two-part publication and deals with the numerical validation of wet steam models by means of condensing nozzle and cascade flows. A number of issues with regard to the quality of the computational fluid dynamics (CFD) code and the applied condensation models are addressed comparing the results to measurements. It can be concluded that a calibration of the models is necessary to achieve a satisfying agreement with the experimental results. Moreover, the modeling of the low pressure model steam turbine operated at the ITSM is described focusing on the asymmetric flow field in the last stage caused by the axial–radial diffuser. Different simplified axisymmetric diffuser models are investigated in steady state simulations, and the results and the arising issues for part-load, design-load, and over-load conditions are discussed. Thereafter, a comparison between the equilibrium and nonequilibrium steam modeling approaches is performed and the advantage of the nonequilibrium model is highlighted. The second part of the publication focuses on experimental investigations and compares the numerical results to wetness measurement data. For this purpose, different loads are also considered.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3