On Prediction of Off-Design Multistage Turbine Pressures by Stodola’s Ellipse

Author:

Cooke D. H.1

Affiliation:

1. Stone and Webster Engineering Corporation, Houston, TX

Abstract

The variation of extraction pressures with flow to the following stage for high backpressure, multistage turbine designs is highly nonlinear in typical cogeneration applications where the turbine nozzles are not choked. Consequently, the linear method based on Constant Flow Coefficient, which is applicable for uncontrolled expansion with high vacuum exhaust, as is common in utility power cycles, cannot be used to predict extraction pressures at off-design loads. The paper presents schematic examples and brief descriptions of cogeneration designs, with background and theoretical derivation of a more generalized “nozzle analogy” which is applicable in these cases. This method is known as the Law of the Ellipse. It was originally developed experimentally by Stodola and published in English in 1927. The paper shows that the Constant Flow Coefficient method is really a special case of the more generalized Law of the Ellipse. Graphic interpretation of the Law of the Ellipse for controlled and uncontrolled expansions, and variations for sonic choking and reduced number of stages (including single stage) are presented. The derived relations are given in computer codable form, and methods of solution integral with overall heat balance iteration schemes are suggested, with successful practical experience. The pressures predicted by the relations compare favorably with manufacturers’ data on four high-backpressure, cogeneration cycle turbines and three large utility low-pressure ends.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3