Affiliation:
1. Stone and Webster Engineering Corporation, Houston, TX
Abstract
The variation of extraction pressures with flow to the following stage for high backpressure, multistage turbine designs is highly nonlinear in typical cogeneration applications where the turbine nozzles are not choked. Consequently, the linear method based on Constant Flow Coefficient, which is applicable for uncontrolled expansion with high vacuum exhaust, as is common in utility power cycles, cannot be used to predict extraction pressures at off-design loads. The paper presents schematic examples and brief descriptions of cogeneration designs, with background and theoretical derivation of a more generalized “nozzle analogy” which is applicable in these cases. This method is known as the Law of the Ellipse. It was originally developed experimentally by Stodola and published in English in 1927. The paper shows that the Constant Flow Coefficient method is really a special case of the more generalized Law of the Ellipse. Graphic interpretation of the Law of the Ellipse for controlled and uncontrolled expansions, and variations for sonic choking and reduced number of stages (including single stage) are presented. The derived relations are given in computer codable form, and methods of solution integral with overall heat balance iteration schemes are suggested, with successful practical experience. The pressures predicted by the relations compare favorably with manufacturers’ data on four high-backpressure, cogeneration cycle turbines and three large utility low-pressure ends.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
97 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献