Improved Design of Internally Cooled Trailing Edge at Engine Similar Conditions: A Conjugate Heat Transfer Problem

Author:

Siddique Waseem12,Fransson Torsten H.1,El-Gabry Lamyaa A.31

Affiliation:

1. Royal Institute of Technology (KTH), Stockholm, Sweden

2. Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan

3. The American University in Cairo, New Cairo, Egypt

Abstract

Gas turbines are operated at elevated temperatures as the thermal efficiency of the gas turbine is directly linked to the turbine inlet gas temperature. The different regions of the turbine blade require different means of cooling. This paper presents different designs of the two-pass trapezoidal channel which represents the trailing edge of a real engine. Engine similar boundary conditions are applied and conjugate heat transfer method is used to predict the wall temperatures. The aim is to design a cooling channel that through use of steam can reduce wall temperatures to below a target value while maintaining minimal pressure drop. The variations in design of a smooth two-pass channel were made to achieve the design target. These variations included installation of ribs at the walls, tapered divider wall, tilted divider wall and L-shaped divider wall to promote fluid impingement on the trailing wall. The results suggest that a channel with staggered ribs at the outlet pass, a tilted divider wall and impingement at the corner is the best arrangement for reducing wall temperatures below the target value; however, it has low overall aerothermal performance due to high pressure losses. A similar channel without impingement can yield acceptable results if a thermal barrier coating is applied or if a small corner of the tip-trailing edge is truncated to reduce material volume. This modification though can improve the thermal performance of the channel, is to result in higher profile and aerodynamics losses.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3