Affiliation:
1. University of Cambridge, Cambridge, UK
2. University of Florence, Florence, Italy
3. University of Surrey, Guildford, UK
Abstract
In Computational Fluid Dynamics (CFD) is possible to identify namely two uncertainties: epistemic, related to the turbulence model, and aleatoric, representing the random-unknown conditions such as the boundary values and or geometrical variations. In the field of epistemic uncertainty, Large Eddy Simulation (LES and DES) is the state of the art in terms of turbulence closures to predict the heat transfer in internal channels. The problem concerning the stochastic variations and how to include these effects in the LES studies is still open.
In this paper, for the first time in literature, a stochastic approach is proposed to include these variations in LES. By using a classical Uncertainty Quantification approach, the Probabilistic Collocation Method is coupled to Numerical Large Eddy Simulation (NLES) in a duct with pin fins. The Reynolds number has been chosen as a stochastic variable with a normal distribution. It is representative of the uncertainties associated to the operating conditions, i.e. velocity and density, and geometrical variations such as the pin fin diameter. This work shows that by assuming a Gaussian distribution for the value of Reynolds number of +/−25%, is possible to define the probability to achieve a specified heat loading under stochastic conditions, which can affect the component life by more than 100%.
The same method, applied to a steady RANS, generates a different level of uncertainty. This procedure proves that the uncertainties related to the unknown conditions, aleatoric, and those related to the physical model, epistemic, are strongly interconnected. This result has directed consequences in the Uncertainty Quantification science and not only in the gas turbine world.
Publisher
American Society of Mechanical Engineers
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Application of UQ for Turbine Blade CHT Computations;Uncertainty Management for Robust Industrial Design in Aeronautics;2018-07-21