LES for the Evaluation of Acoustic Damping of Effusion Plates

Author:

Andreini A.1,Bianchini C.1,Facchini B.1,Peschiulli A.2,Vitale I.2

Affiliation:

1. University of Florence, Florence, Italy

2. Avio Group s.p.a., Torino, Rivalta di Torino, Italy

Abstract

Effusion cooled liners, commonly used in gas turbine combustion chambers to reduce wall temperature, may also help reducing the propagation of pressure fluctuations due to thermoacoustic instabilities. Large Eddy Simulations were conducted to accurately model the flow field and the acoustic response of effusion plates subject to a mean bias flow under external sinusoidal forcing. Even though existing lower order computational models showed good predicting capabilities, it is interesting to verify directly the influence of those parameters such as the staggered arrangement, the hole inclination, the presence of a grazing flow and the level of bias flow, which are not fully included in those models. A first bi-periodic single hole configuration with normal acoustic forcing was selected to investigate the acousting behavior with varying inclination angle, bias and grazing flow. 90° and 30° perforations were simulated for bias flow Mach number in the range 0.05–0.1 and grazing flow between 0 and 0.08. Those conditions were chosen to expand the knowledge of acoustic properties towards actual liners working conditions. A second more computationally expensive set-up, including 4 inclined holes at 30°, focused on the damping of parallel to the plate waves. Details of the computational methods implemented in the general purpose open-source unstructured CFD code OpenFOAM® exploited to conduct this analysis are reported together with an analysis of the results obtained from the acoustic computations both regarding the flow field generated and the absorption and energy dissipation coefficient.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3