Experimental Investigation and Computational Evaluation of Contoured Endwall and Leading Edge Fillet Configurations in a Turbine NGV

Author:

Turgut Özhan H.1,Camcı Cengiz1

Affiliation:

1. The Pennsylvania State University, University Park, PA

Abstract

Secondary flow minimization is a crucial problem in a turbine passage. In the present paper, three different ways are employed to reduce the secondary flow related total pressure loss. These are nonaxisymmetric endwall contouring, leading edge (LE) fillet, and the combination of these two approaches. Experimental investigation and computational assessment are applied for the performance calculations. The experiments are carried out in an annular Axial Flow Turbine Research Facility (AFTRF) having a diameter of 91.66cm. For the experimental measurement comparison, a reference Flat Insert is installed in the nozzle guide vane (NGV) passage. It has a constant thickness with cylindrical surface and is manufactured by stereolithography (SLA) method. Also, Flat Insert has a backward facing step at the NGV exit, and the effect of this step is analyzed computationally. Four different LE fillets are designed, and they are attached to both cylindrical Flat Insert and the contoured endwall. Total pressure measurements are taken at rotor inlet plane with Kiel probe. The probe traversing is completed with one vane pitch and from 8% to 38% span. For one of the designs, area-averaged loss is reduced by 15.06%. The simulation estimated this reduction as 6.95%. Computational evaluation is also performed at the NGV exit plane. The most effective design reduced the mass-averaged loss by 1.84% on the whole passage. The computational study did not include the rim seal flow between the vane and rotor domain and also rotor simulation was absent. The difference between the measurements and the simulation comes from these two important effects.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3