Turbulence Levels are High at the Combustor-Turbine Interface

Author:

Cha Chong M.1,Ireland Peter T.2,Denman Paul A.3,Savarianandam Vivek3

Affiliation:

1. Rolls-Royce plc, Derby, UK

2. University of Oxford, Oxford, UK

3. Loughborough University, Loughborough, UK

Abstract

Turbulence measurements are made in a novel gas turbine rig facility recently used to study combustor-turbine interactions in jet engines [1]. The rig is capable of numerous area traverses surrounding engine turbine nozzle guide vanes (NGVs). The rig is unique in that complete engine hardware of the annular combustion subsystem is used to simulate the upstream flow entering the turbine. The rig operates at cold, near-atmospheric conditions. The turbulence measurements include both the turbulence intensities and lengthscales and span an area over a single combustor sector. Axial measurement planes include locations both upstream and downstream of the real engine hardware NGVs. The upstream plane corresponds to a conventional combustor-turbine interface plane. In [1], pressure, velocity, and passive scalar mixing measurements were presented along with RANS CFD predictions. Here, in addition to the newly measured turbulence quantities, large-eddy simulations (LES) are performed for the complete, coupled combustor-turbine system. Good agreement between rig data and CFD is seen at the combustor-turbine interface, with LES yielding improved predictions over RANS. For the flow through the NGV passages, vortex visualizations of the simulated flowfields show significant differences to the classic, commonly accepted picture of Langston [2] and others [3]. The difference is attributed to the high turbulence levels created by the combustor. The impact of the limitations of the combustor-turbine rig on these findings is discussed.

Publisher

American Society of Mechanical Engineers

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3