Life Prediction for Turbopropulsion Systems Under Dwell Fatigue Conditions

Author:

Chan Kwai S.1,Enright Michael P.1,Moody Jonathan P.1,Hocking Benjamin2,Fitch Simeon H. K.2

Affiliation:

1. Southwest Research Institute®, San Antonio, TX

2. Elder Research Inc., Charlottesville, VA

Abstract

The objective of this investigation was to develop an innovative methodology for life and reliability prediction of hot-section components in advanced turbopropulsion systems. A set of three generic time-dependent crack growth models was implemented and integrated into the DARWIN® probabilistic life-prediction code. Using the enhanced risk analysis tool and material constants calibrated to IN 718 data, the effect of time-dependent crack growth on the risk of fracture in turboengine component was demonstrated for a generic rotor design and a realistic mission profile. The results of this investigation confirmed that time-dependent crack growth and cycle-dependent crack growth in IN 718 can be treated by a simple summation of the crack increments over a mission. For the temperatures considered, time-dependent crack growth in IN 718 can be considered as a K-controlled environmentally-induced degradation process. Software implementation of the generic time-dependent crack growth models in DARWIN provides a pathway for potential evaluation of the effects of multiple damage modes on the risk of component fracture at high service temperatures.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3